

Voltage Transducer LV 25-600/SP2

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

 $V_{PN} = 600 \text{ V}$

Electrical data

$egin{aligned} oldsymbol{V}_{PN} \ oldsymbol{V}_{P} \ oldsymbol{I}_{PN} \ oldsymbol{R}_{M} \end{aligned}$	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current Measuring resistance		600 0 ± 90 10 R _{M min}	00 R _{Mmax}	V V mA
	with ± 12 V	$@ \pm 600 \text{ V}_{max}$ $@ \pm 900 \text{ V}_{max}$	30 30	200 100	Ω
	with ± 15 V	@ $\pm 600 \text{ V}_{\text{max}}$ @ $\pm 900 \text{ V}_{\text{max}}$	100 100	320 180	Ω
I _{SN} K _N	Secondary nominal r.m.s. current Conversion ratio		25 600 V /	25 mA	mΑ
V _C I _C V _d	Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isola	ation test ¹⁾ , 50 Hz, 1 mn	± 12 15 10 (@±15V)+ I _S 4.1		V mA kV

Accuracy - Dynamic performance data

X _G e _L	Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = 25^{\circ}C$ Linearity		± 0.8 < 0.2	% %
I _o	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	+ 25°C + 70°C - 30°C + 25°C	Typ ± 0.10 ± 0.10	
t _r	Response time @ 90 % of $\mathbf{V}_{\scriptscriptstyle{\mathrm{PN}}}$		15	μs

General data

T_A	Ambient operating temperature	- 30 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
N	Turns ratio	2500 : 1000	
Р	Total primary power loss	6	W
$R_{_1}$	Primary resistance @ T _A = 25°C	60	kΩ
R _s	Secondary coil resistance @ T _A = 70°C	115	Ω
m	Mass	60	g
	Standards	EN 50155	

Note: 1) Between primary and secondary.

Features

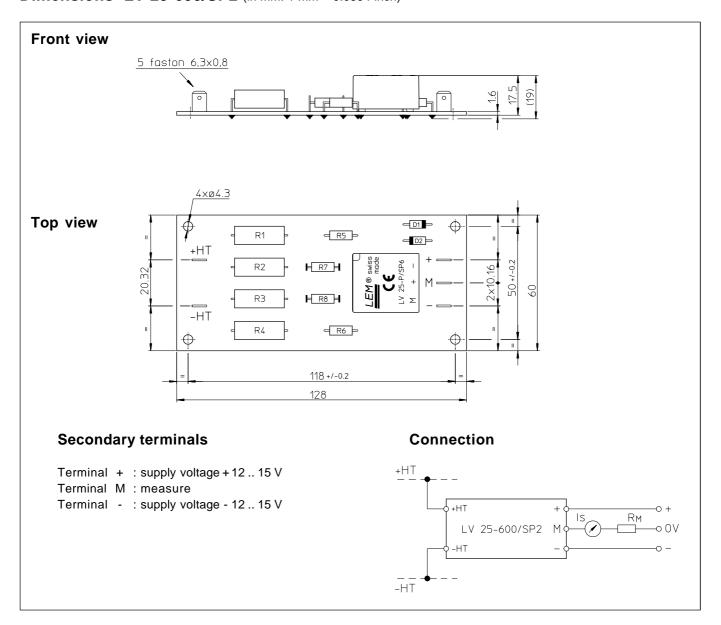
- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistors R and transducer mounted on printed circuit board 128 x 60 mm.

Special features

- $T_{\Lambda} = -30^{\circ}C ... + 70^{\circ}C$
- Coated
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

061005/2

Dimensions LV 25-600/SP2 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

• Connection of primary

• Connection of secondary

± 0.3 mm

4 holes \varnothing 4.3 mm

Faston 6.3 x 0.8 mm

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when V_p is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.